Statistical Methods I
Revised: September, January 2015
Course Description
Descriptive statistics, correlation, least squares regression, basic probability models,
probability distributions, central limit theorem, conﬁdence intervals, hypothesis
testing. Prerequisite: MATH 140 or above. Three semester hours.
Objectives
By the end of the course students will be able to
 Describe the concepts of population and sample, and some of the basic descriptive
measures associated with them;
 Explain graphical methods for data presentation;
 Connect the concepts of probability, random variables, and distributions;
 Assess the properties of common distributions, especially the normal and binomial;
 Synthesize the ideas of correlation and regression;
 Interpret estimation and hypothesis testing procedures applied to population means
and proportions;
 Compare multiple means and proportions using appropriate statistical analyses; and
 Model univariate and multivariate data using linear models.
Text
Roxy Peck, Chris Olsen, and Jay DeVore.
Introduction to Statistics and Data Analysis, Fourth Edition. (BrooksCole/ Cengage Learning), 2011.
Grading Procedure
Grading procedures and factors influencing course grade are left to the discretion
of individual instructors, subject to general university policy.
Attendance Policy
Attendance policy is left to the discretion of individual instructors, subject to
general university policy.
Course Outline

Chapter 1: The Role Of Statistics. (1 day)
Why Study Statistics? The Nature and Role of Variability. Statistics and the
Data Analysis Process. Types of Data and Some Simple Graphical Displays

Chapter 2: The Data Analysis Process And Collecting Data Sensibly. (4 days)
Statistical Studies: Observation and Experimentation. Sampling. Simple Comparative
Experiments. More on Experimental Design. Interpreting and Communicating the Results
of Statistical Analyses.
Note: Section 2.5 is optional.

Chapter 3: Graphical Methods For Describing Data. (4 days)
Displaying Categorical Data: Frequency Distributions, Bar Charts and Pie Charts.
Displaying Numerical Data: Dotplots and StemandLeaf Displays. Displaying Numerical
Data: Frequency Distributions and Histograms. Interpreting the Results of Statistical
Analyses. Note: Section 3.1 is optional and Section 3.4 may be taught concurrently
with Section 5.1. The topic of density histograms in Section 3.3 is optional.

Chapter 4: Numerical Methods For Describing Data. (3 days)
Describing the Center of a Data Set. Describing Variability in a Data Set. Summarizing
a Data Set: Boxplots. Interpreting Center and Spread: Chebyshev's Rule, The Empirical
Rule, and zScores. Interpreting the Results of Statistical Analyses. Note: The topic
of trimmed means in Section 4.1 is optional.

Chapter 5: Summarizing Bivariate Data. (2 days)
Scatter Plots. Correlation. Fitting a Line to Bivariate Data. Assessing the
Fit of a Line. Nonlinear Relationships and Transformations. Interpreting the Results
of Statistical Analyses. First steps, design of experiments, sampling design, toward
statistical inference. Note: Sections 5.4 and 5.5 are optional.

Chapter 6: Probability. (3 days)
Interpreting Probabilities and Basic Probability Rules. Probability as a Basis
for Making Decisions. Estimating Probabilities.

Chapter 7: Population Distributions. (4 days)
Describing the Distribution of Values in a Population. Population Models for
Continuous Numerical Variables. Normal Distributions. Checking for Normality and Normalizing
Transformations.

Chapter 8: Sampling Variability And Sampling Distributions. (3 days)
Statistics and Sampling Variability. The Sampling Distribution of a Sample Mean.
The Sampling Distribution of a Sample Proportion.

Chapter 9: Estimation Using A Single Sample. (4 days)
Point Estimation. A Large Sample Confidence Interval for a Population Proportion.
A Confidence Interval for a Population Mean. Interpreting the Results of Statistical
Analyses.

Chapter 10: Hypothesis Testing Using A Single Sample. (6 days)
Hypotheses and Test Procedures. Errors in Hypothesis Testing. LargeSample Hypothesis
Tests for a Population Proportion. Hypothesis Tests for a Population Mean. Power and
Probability of Type II Error (Optional). Interpreting the Results of Statistical Analyses.

Chapter 11: Comparing Two Populations or Treatments. (4 days)
Inferences Concerning the Difference Between Two Populations or Treatment Means Using
Independent Samples. Inferences Concerning the Difference Between Two Population or
Treatment Means Using Paired Samples. LargeSample Inferences Concerning the Difference
Between Two Populations or Treatment Proportions. Interpreting the Results of Statistical
Analyses.

Chapter 12 The Analysis Of Categorical Data And GoodnessOfFit Tests. (2 days)
Chisquare Tests for Univariate Data. Tests for Homogeneity and Independence in a
Twoway Table. Interpreting the Results of Statistical Analyses.

Chapter 13: Simple Linear Regression and Correlation: Inferential Methods. (2 days)Simple Linear Regression Model. Inferences About the Slope of the Population Regression
Line. Checking Model Adequacy. Inferences Based on the Estimated Regression Line (Optional).
Inferences About the Population Correlation Coefficient (Optional). Interpreting the
Results of Statistical Analyses.

Chapter 14: Multiple Regression Analysis. (2 days)
Multiple Regression Models. Fitting a Model and Assessing Its Utility. Inferences
Based on an Estimated Model. Other Issues in Multiple Regression. Interpreting and
Communicating the Results of Statistical Analyses.

Chapter 15: Analysis of Variance. (2 days)
SingleFactor ANOVA and the $F$ Test. Multiple Comparisons. The $F$ Test for a Randomized
Block Experiment. TwoFactor ANOVA. Interpreting the Results of Statistical Analyses.
Most instructors for this course require the use of statistical calculators.