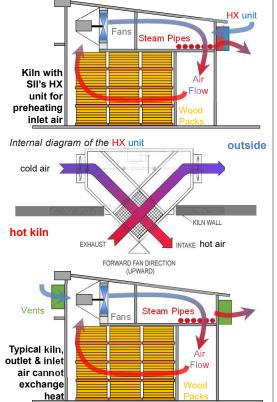

Lumber Drying Heat Exchanger Design Study/DFM

SII Dry Kilns

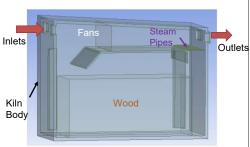
Vestern

PROBLEM STATEMENT



Kiln drying prevents timber and lumber from warping once installed in homes, furniture, and other products.

SII builds kilns that vent hot moisture from heated lumber.


SII sells a heat exchanger (HX) unit that preheats inlet kiln air with outgoing moisture.

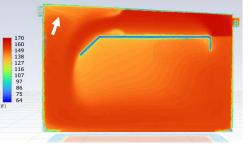
We simulated & quantified the energy saved by preheating with SII's "HX" unit, which differs from the direct moisture venting that's common in the industry:

FINAL DESIGN, APPROACH, PLAN

- Set a power value on the steam pipes to achieve 150° F for wood drying.
- Compare power values when kiln inlet air is preheated with a HX unit (inlet temp. of 138°F) and without a HX unit (inlet temp. of 50°F).

Simulation		
input data	Red Oak without HX	Red Oak with HX
Fan speed	400 ft/min	400 ft/min
Inlet		
pressure	14.69 psi	14.69 psi
let velocity	200 ft/min	200 ft/min
Outlet		
conditions	Pressure = 14.69 psi	Pressure = 14.69 psi
ncoming air		
emperature	50°F	138°F
Power		
supplied to		
kiln	Varies	Varies
Set boundary conditions		
Simulation		
Initialize the solution approach		
Enable solution monitors		
Run simulation		
		Adify boundary
		conditions
Check for convergence		
YES NO		
$\sim \sim$		
Charlesson		
Check accuracy		
YES NO		
\sim		
(STOP)		

RESULTS

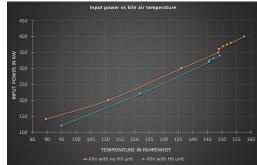

The simulations showed:

That a standard kiln requires 370kW to maintain 150° F. The kiln with an HX unit only needed 340kW to maintain 150° F.

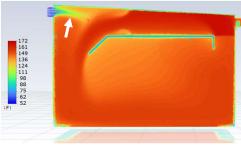
$$\frac{370 kW - 340 kW}{370 kW} * 100\% = 8.1\%$$

Thus, the simulations show that a lumber kiln uses 8% less energy when retrofitted with SII's HX unit.

Simulation results for kiln with a HX unit


SUMMARY AND CONCLUSIONS

The team was tasked with simulating the effects of an HX unit on a dry kiln to verify the design and performance of this product alongside energy savings.


- Based on the results acquired from the team's simulations, it can be concluded that an HX unit saves a measurable amount of energy (8%) during lumber drying.
- An 8% energy savings equates to ≈\$1,868 in monthly savings for gas-fired heat and ≈\$3,650 in monthly savings for electrical heat. [Based on current market rate for NC from bls.gov]

FUTURE WORK

- Simulation accuracy would be enhanced by detailed wood and humidity modeling for use with wet-bulb and dry-bulb kiln temperature data.
- Detailed HX unit modeling, atop overall kiln modeling, would likely reveal design modifications that could enhance energy savings.

Simulation results for kiln without a HX unit

TEAM & ACKNOWLEDGEMENTS

- Camron Cooper, Mechanical Engineering
- Christian Glave, Mechanical Engineering
- · Scott Gallant, Mechanical Engineering
- Sponsor contact: Matthew Glascoe
- Faculty mentor: Dr. Scott Rowe
- Special assistance from: Dr. Kaitlyn Tyler, & Rylan Paye

