
Markov Chain Enrollment Model

Presentation Notes

NCAIR 2023

Nathan Hodges

April 4, 2023



Abstract

This presentation will be a summary and extension to an AIR publication on the topic (Article 147)
that was released in Fall 2019. The Markov Chain has been a tool used in modeling since the early
1900’s. Unlike some modern machine learning algorithms, which can appear more like a ”black box”
that produces a value; the results of the Markov Chain can be explained through student graduation
and drop out rates along with the relative class sizes and new student headcounts. The process
is quick and simple to explain relative to machine learning models and requires only two years of
enrollment data to yield a projection. During my presentation I will show how the projections from
this model have outperformed the UNC system office’s enrollment projections for undergraduate
students at WCU over the past five years. In addition to an explanation of the model I will also be
including the SQL code used to create the projections, which uses connections to SDM data. Thus,
any IR office should be able to go home and run the code for themselves to compare to system office
projections.



1 Introduction

A Markov chain is a mathematical model used to describe a system that changes over time in a
probabilistic way. The model consists of a set of states and a set of probabilities that describe how
the system moves from one state to another. At any given time, the system is in one of these
states, and the probability of moving to any other state depends only on the current state and not
on any previous states. This is called the ”memoryless” property, and it allows us to model a wide
variety of systems, including weather patterns, stock prices, and even the behavior of people. The
Markov chain is named after the Russian mathematician Andrey Markov, who first described the
concept in the early 20th century. - Chat GPT (verified/unedited by actual human Nathan Hodges
20230331.)

A usually discrete stochastic process (such as a random walk) in which the probabilities of
occurrence of various future states depend only on the present state of the system or on the
immediately preceding state and not on the path by which the present state was achieved -
Merriam-Webster Dictionary 20230331

Here is a real example of a transition diagram from fall 2019 to fall 2020 for students who were
enrolled in fall 2019 with 0-30 credit hours at WCU. You can see that all possible transitions are
shown, the probability of transitioning from state 1 to a different state after one year is simply the
proportion of students from state 1 that transitioned from state 1 to a different state in 2020.

• state 1: 0 - 30 SCH

• state 2: 31 - 60 SCH

• state 3: 61 - 90 SCH

• state 4: > 90 SCH

• state G: Graduate

• state W: Withdraw

1 2 3 4

G W

0.31

0.05 0.20

0.41

0.03

0.00

p11 + p12 + p13 + p14 + p1G + p1W = 1
0.31 + 0.41 + 0.03 + 0.00 + 0.05 + 0.20 = 1
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The model simply assumes that for the next year students will progress in the same manner. For
example, if there are 100 students enrolled with 0-30 credit hours in fall 2020 than we would
expect using this model that next year this cohort of students will consist of
(1, 2, 3, 4, G,W ) = (31, 41, 3, 0, 5, 20). This is why the AIR publication by Rex, Gandy et. al.[1],
titled their paper, Detecting Leaky Pipes and the Bulge in the Boa; because it shows you how many
students are leaving and how many students are progressing through vaious levels of their career at
your institution. The next question you might ask is what are the variances of these transition
probabilities. Below is a chart which shows how the probabilities from state one have evolved over
time. As you can see from the large swings in year 2020 this model is susceptible to extreme
changes in human behavior.
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2 Markov Chain

2.1 General Markov Chain Introduction

2.1.1 Basic Markov Process

A Markov chain is a stochastic theory which can be used to model a probabilistic system that has
a number, lets say n states or phases. Moving from one state to another is referred to as a
transition, the probability of moving from state j to state k can be written as pjk. For a system to
be considered stochastic the probability of moving from state j to state k must not depend on the
previous state of the system. This property, referred to as the Markov property allows a system to
be modeled with a Markov chain. Below is a diagram of a system that satisfies these conditions.

1 2

0.4

0.3

0.70.6

In this system there are two states. The probability of transitioning between the states is labeled
on each arrow. So for example the probability of transitioning from state one to state two is 0.4,
you could write this as p12 = 0.4. The probability of transitioning from one state to another is only
dependent on which state the system is currently in. All of these transitions can be represented in
a matrix like the one below.

P =

(
p11 p12
p21 p22

)
=

(
0.6 0.4
0.3 0.7

)
Note that all of the possible transitions from a specific state are defined and the probabilities add
up to 1; that is p11 + p12 = 1. The current state of the system can be defined by a vector v which
has n elements and represents the probability of being in a specific state. So if the current state of
the system is known to be in state one, than this vector can be written as (1, 0). Where the
probability of being in state one is 1 and the probability of being in state two is 0. With the
transition matrix defined and the initial state vector known, one can determine the probability of
the state after any number of transitions by multiplying the initial state vector by the transition
matrix. Here is an example showing how to calculate the final state vector after three transitions.

v1 = v0P =
(
1 0

)(0.6 0.4
0.3 0.7

)
=

(
0.6 0.4

)
v2 = v1P =

(
0.6 0.4

)(0.6 0.4
0.3 0.7

)
=

(
0.48 0.52

)
v3 = v2P =

(
0.48 0.52

)(0.6 0.4
0.3 0.7

)
=

(
0.444 0.556

)
You can see that after one step the state vector v1 is (0.6, 0.4), meaning that there is a probability
0.6 of being in state one and there is a probability of 0.4 of being in state two. Repeating the
process for each state vector we see that after three transitions from state one there is a probability
of 0.444 that the system would be in state one and a probability of 0.556 that the system would be
in state two.
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2.1.2 Absorbing Markov Chain

In this section we will discuss a type of Markov chain that has a state in which once the system is in
that state it can never leave that state. This is referred to as an absorbing state. Below is a phase
diagram and transition matrix for a system with two absorbing states and two transient states.

1 2 3

0.4

0.3

0.50.6 1
0.2

2.2 Applying Markov Chain to Undergraduate Enrollment

The transition period for this modeled will be from one fall term to the next fall term. The
different states of a student are determined by the cumulative amount of credit hours that the
student has earned while enrolled or whether or not they withdrew or graduated from the
university. In this model I chose to use the cumulative institutional credit hours earned (SCH),
that is the number of credit hours earned at the university which excludes credit hours earned
through AP courses in high school or transfer credit from other institutions. Other works use
different credit hour classifications.[1] There are several reasons why I decided to use institutional
credit hours. The first reason is that this data seemed more complete and reliable. The second
reason is that since we are tracking the progress of students through our institution it made sense
to track credit earned at the intuition. The third reason is that after comparing the results of total
(transfer and institutional) credit to credit earned through the institution alone; it appeared that
using institutional credit hours yielded better results. I chose to use the student credit hour
groupings based on the expected amount of credit completion per year, determined by two
semesters each completing 15 hours per semester.[1]

• 1: 0 - 30 SCH

• 2: 31 - 60 SCH

• 3: 61 - 90 SCH

• 4: > 90 SCH

• G: Graduate

• W: Withdraw

An important assumption used in this model that should be noted is that I assume that a student
who re-enrolls at the institution is treated the same as any other new student with a certain level
of credit hours. Put another way, I do not calculate the probability of students re-enrolling after
they withdraw. There are several reasons for this, but the most important being complexity. Some
papers show how this can be done, but would require you to track the number of terms that pass
since the student was last enrolled.[3] Below is a phase diagram illustrating the model.
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1 2 3 4

G W

p1G

pjk

1 1
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3 Results and Performance

Once the model is defined you can calculate the probability of a student transitioning between
these various states using enrollment data for each term. Note that the transition probabilities will
be different each term. This is determined by many factors known and unknown in that time
period including changes in admission policies, environmental impacts, government policies etc...
There are many reasons that students may decide to continue or withdraw from an institution. To
see the process I used in determining these transition probabilities skip to the next section. In this
section we will look at the results and performance of the model.

3.1 Transition Matrices

As noted above there will be a transition matrix for each term, in this section I will focus on the
matrices for fall terms 2018, 2019, 2020. As an example, the transition matrix for fall 2019 to fall
2020 is denoted T19−20. 

p11 p21 p31 p41 0 0
p12 p22 p32 p42 0 0
p13 p23 p33 p43 0 0
p14 p24 p34 p44 0 0
p1G p2G p3G p4G 1 0
p1W p2W p3W p4W 0 1



T19−20 =


0.308 0 0 0 0 0
0.402 0.125 0 0 0 0
0.026 0.533 0.109 0 0 0
0.000 0.047 0.522 0.140 0 0
0.040 0.193 0.310 0.829 1 0
0.224 0.102 0.059 0.031 0 1



T19−20 =


0.314 0 0 0 0 0
0.407 0.134 0 0 0 0
0.028 0.539 0.097 0 0 0
0.000 0.036 0.523 0.151 0 0
0.049 0.205 0.326 0.810 1 0
0.201 0.087 0.053 0.039 0 1



T20−21 =


0.347 0 0 0 0 0
0.345 0.144 0 0 0 0
0.026 0.486 0.102 0 0 0
0.000 0.042 0.487 0.161 0 0
0.051 0.216 0.339 0.789 1 0
0.232 0.112 0.071 0.049 0 1



T(i,i+1),j,k =


p11 p21 p31 p41 0 0
p12 p22 p32 p42 0 0
p13 p23 p33 p43 0 0
p14 p24 p34 p44 0 0
p1G p2G p3G p4G 1 0
p1W p2W p3W p4W 0 1


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¯h(i+1),j =


h1

h2

h3

h4

0
0



¯n(i+1),j =


n1

n2

n3

n4

0
0


T20−21 · h̄21 =

5154
2219
1630
1142
0
0

⊙


0.347 0 0 0 0 0
0.345 0.144 0 0 0 0
0.026 0.486 0.102 0 0 0
0.000 0.042 0.487 0.161 0 0
0.051 0.216 0.339 0.789 1 0
0.232 0.112 0.071 0.049 0 1

+
[
3384 82 54 30 0 0

]

H(20,21),j,k =


1788 1 0 0 0 0
1778 320 0 0 0 0
132 1078 167 0 0 0
0 93 794 184 0 0
261 479 553 901 1 0
1194 248 116 57 0 1


= Ĥ(21,22),j,k

ĥ(22,j) =


1789
2099
1377
1071
2194
1615

+


3384
82
54
30
0
0

 =


5173
2181
1431
1101
2194
1615



H(20,21),j,k =


1769 1 0 0 0 0
1759 378 0 0 0 0
131 1272 173 0 0 0
0 110 823 179 0 0
258 565 573 877 1 0
1181 293 120 55 0 1


5173 + 2181 + 1431 + 1101 = 9886
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4 Data Structure

The first issue is the typical retention data problem. Where we need to fill the gaps in enrollment
records relative to terms.

Term ID Credit Hours Level

2014 1 15 1
2015 1 45 2
2014 2 30 1
2016 2 30 1
2014 3 15 1
2015 3 20 1
2016 3 61 3
2014 4 10 1
2015 4 20 1
2016 4 61 3

Table 4.1: Enrollment records ordered by ID
and Term.

Term

2014
2015
2016

Table 4.2: Available terms.

Term ID Credit Hours Level

2014 1 15 1
2015 1 45 2
2016 1 Null Null
2014 2 30 1
2015 2 Null Null
2016 2 30 1
2014 3 15 1
2015 3 20 1
2016 3 61 3
2014 4 10 1
2015 4 20 1
2016 4 61 3

Table 4.3: Joining these tables gives the needed withdraw & exited terms.

Term Next Term ID j k

2014 2015 1 1 2
2015 2016 1 2 W
2014 2015 2 1 W
2014 2015 3 1 1
2015 2016 3 1 3
2014 2015 4 1 1
2015 2016 4 1 3

Table 4.4: Join table 4.3 to itself by shifting
the terms.

Term Next Term j k njk

2014 2015 1 1 2
2014 2015 1 2 1
2014 2015 1 W 1
2015 2016 1 3 2
2015 2016 2 W 1

Table 4.5: Group table 4.4 by term and state
transition.
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Term Next Term j k pjk

2014 2015 1 1 2/4
2014 2015 1 2 1/4
2014 2015 1 W 1/4
2015 2016 1 3 1
2015 2016 2 W 1

Table 4.6: Divide the number of njk by the
total number of students in that state.

Term Next Term j k1 k2 k3 kw

2014 2015 1 2/4 1/4 0 1/4
2015 2016 1 0 0 1 0
2015 2016 2 0 0 0 1

Table 4.7: To put this table in a matrix form
pivot the table.

As you can see from this example, the data is not complete enough to create a Markov chain.


p11 p21 p31 p41 0 0
p12 p22 p32 p42 0 0
p13 p23 p33 p43 0 0
p14 p24 p34 p44 0 0
p1G p2G p3G p4G 1 0
p1W p2W p3W p4W 0 1

 ·


c1
c2
c3
c4
1
1

 (4.1)


p11 p12 p13 p14
p21 p22 p23 p24
p31 p32 p33 p34
p41 p42 p43 p44

 (4.2)
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