“Power” Tools for IR Reporting

David Onder and Alison Joseph
AIR Annual Forum 2014

- 10,107 students
- Master's Comprehensive
- Mountain location
- Residential and Distance

Why Pivot Tables
- Summarize large datasets
- Quickly add, remove, rearrange elements
- (Little to) No formula-writing
- Can be a basis for self-service data
- Can connect to a refreshable data source
Limitations of Pivot Tables

• Connected to only 1 table
• Formatting not maintained
• Calculated fields need to be created for each Pivot Table
• Can’t count the way universities usually want to count

Connecting to Data

• Wide variety of data sources, including:
 – Access
 – SQL Server
 – Text files (.csv)
 – XML
 – OLEDB
 – Etc.
Connecting to Data

- Connects to:
 - Tables
 - Queries
Connecting to Data

Displaying Data – Pivot Tables

Connecting to Data
Displaying Data – Pivot Tables

Displaying Data – Pivot Tables

Displaying Data – Power Pivot

New and improved Pivot Tables!
Displaying Data — Power Pivot

- **Set-up**

 - Installed with Excel 2013
 - Downloadable add-in for Excel 2010
 - Not available prior to Excel 2010

Displaying Data — Power Pivot

- **The Power Pivot environment**

 - Open Power Pivot
 - Data Model
Displaying Data — Power Pivot

• Import data

Displaying Data — Power Pivot

• How the imported data look

Displaying Data — Power Pivot

• Bringing data into Excel
Displaying Data — Power Pivot

- **PivotTable vs. Power Pivot PivotTable**

- **DAX**
 - Data Analysis Expressions (DAX)
 - Formula language for Power Pivot
 - Used to create Calculated Columns and Calculated Fields

- **Calculated Columns**
 - Used to add an additional column to data table
 - Can be a column added from a related table (like a VLOOKUP) or new data, derived from existing data (sum to combined SAT, length of name, substring of longer string, etc.)
 - Column can be used in any area of the pivot
Displaying Data — Power Pivot

• Adding a calculated column to pivot table

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Row Labels</td>
<td>Count of R</td>
<td>Average SAT Count</td>
</tr>
<tr>
<td>Information Management</td>
<td>138</td>
<td>1088.19819</td>
</tr>
<tr>
<td>Information Management</td>
<td>116</td>
<td>1088.18819</td>
</tr>
<tr>
<td>Library Science</td>
<td>37</td>
<td>1067.552941</td>
</tr>
<tr>
<td>College of Journalism</td>
<td>67</td>
<td>1045.5</td>
</tr>
<tr>
<td>Journalism</td>
<td>67</td>
<td>1045.5</td>
</tr>
</tbody>
</table>

Evaluation Contexts

• Row context

• Filter context

Evaluation Contexts

• Row context
 • The one row being evaluated
 • Automatic for calculated columns
 • Can be created in other ways as well (SUMX, AVERAGEX, etc.)

• Filter context
Row Context

- The filters being applied by the pivot table
- Filters can be explicit or implicit
- Can add additional filters only with CALCULATE

Evaluation Contexts

- Row context
 - The one row being evaluated
 - Automatic for calculated columns
 - Can be created in other ways as well (SUMX, AVERAGEX, etc.)

- Filter context
 - The filters being applied by the pivot table
 - Filters can be explicit or implicit
 - Can add additional filters only with CALCULATE

Filter Context
Displaying Data — Power Pivot

- **Calculated Fields**
 - Used to add a calculated element
 - Aggregate function that applies to whole table, column, or range
 - Something that needs to be recalculated
 - Fields can only be used in the VALUES section

Displaying Data — Power Pivot

- **Adding a Calculated Field**

Displaying Data — Power Pivot

- **Adding a Calculated Field**

- **DISTINCTCOUNT(WorkerID)"**
Displaying Data – Power Pivot

- Calculated Field in Power Pivot

- DISTINCTCOUNT

 DISTINCTCOUNT(<column>)

 - Counts unique values in column
Displaying Data — Power Pivot

• Adding a Calculated Field

```
| College of Information Studies | 151 | 152 |
| Information Management         | 116 | 116 |
| Information Management         | 116 | 116 |
| Library Science                | 37  | 37  |
```

Displaying Data — Power Pivot: DAX CALCULATE

• CALCULATE

CALCULATE(expression, <filter1>, <filter2>…)

– Supercharged SUMIFS
– Allows filtering (IFs) on any aggregate function (imagine “MAXIFS”, “MEDIANIFS”, etc.)
– Operators for filters: =, <, >, <=, >=, <>
– Can also use | | in filter on same column

First-time Freshmen Distinct Students :=

```
CALCULATE( [Distinct Students],
            WorkshopData[Class level]="Freshman",
            WorkshopData[Is new student this term]="Yes")
```
Displaying Data — Power Pivot: DAX CALCULATE

Table 1: Calculating Distinct Enrolled Students

<table>
<thead>
<tr>
<th>Class Level</th>
<th>Freshmen</th>
<th>Sophomores</th>
</tr>
</thead>
<tbody>
<tr>
<td>2009-2010</td>
<td>20</td>
<td>15</td>
</tr>
<tr>
<td>2010-2011</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>2011-2012</td>
<td>5</td>
<td>5</td>
</tr>
</tbody>
</table>

Displaying Data — Power Pivot: DAX ALL

- **ALL**

  ```dax
  ALL( table_or_column, <column1>, <column2>, …)
  ```

 - Returns all the rows in a table, or all the values in a column, removing any filters that might have been applied

  ```dax
  All Distinct Enrolled Students:=
  CALCULATE( [Distinct Enrolled Students],
              ALL( WorkshopData[Class level] ) )
  ```
Displaying Data — Power Pivot: DAX ALL

% of All Distinct Enrolled Students :=
DIVIDE([Distinct Enrolled Students],
[All Distinct Enrolled Students])

• DIVIDE
DIVIDE(<num>, <den>, [<alt>])

 – “Safe” divide
 – Can specify alternate result for divide by zero
Displaying Data — Power Pivot

FILTER

FILTER(TableToFilter, FilterExpression)

– Returns a table filtered by FilterExpression

Displaying Data — Power Pivot: DAX FILTER

Above Average GPA Enrolled Undergraduates:

CALCULATE([Distinct Enrolled Students],
FILTER(WorkshopData,
WorkshopData[Institutional cumulative GPA] > [Average GPA Enrolled Undergraduates]))
Displaying Data – Power Pivot: DAX FILTER

- **ALLEXCEPT**

 \[\text{ALLEXCEPT(} \text{table}, \text{ <column>[, <column>…]} \) \]

 - Similar to ALL function, but excludes the column(s) specified from the ALL.
Displaying Data — Power Map and Power View

• Power Map
 – Automated way to map geographic data
 – Doesn’t require geo-location information like longitude and latitude (just country, state, or county names)
 – Can add elements to look at aggregate function on variables across physical space
Displaying Data — Power Map and Power View

• Power View
 – Dashboard builder
 – Allows synchronized filtering
 – Bring together tables, graphs, maps
Power Query – Advanced

• Retrieve data from a variety of external sources
 • Pull in external data from the Internet
• Limit the data you bring into your model (filter on rows and columns)
 • Keep your model to a reasonable size (< 1M records) to prevent processing problems
 • Bring in only what you need

• Consolidate multiple tables into one
Power Query – Advanced

- Consolidate multiple tables into one
- In-line data transformations
- All transformation steps are listed, and reversible

Access to sources of data not readily available to Power Pivot
Power Query – Advanced

- Facebook pages and groups

- Drill down for additional data fields in Facebook records

- Availability of data fields depends on your personal status with the group/page, and Facebook data fields completed and available

Power Query – Advanced

- Employment data
Power Query – Advanced

- Connect to online faculty database
 - Import active users from Digital Measures
 - Merge with local data
 - Export updated data to Digital Measures

Power Query – Advanced

- Microsoft SQL Server and Access
Resources

• Rob Collie (http://powerpivotpro)
 – DAX Formulas for PowerPivot, 2013
• Bill Jelen (http://mrexcel.com)
 – PowerPivot for the Data Analyst: Microsoft Excel 2010, 2010
• Alberto Ferrari and Marco Russo
 – Microsoft Excel 2013: Building Data Models with PowerPivot
• Chris Webb (http://cwebbbi.wordpress.com)
• Kasper de Jonge (http://www.powerpivotblog.nl)
• Purna Duggirala (http://www.chandoo.org/)

Contact Information

David Onder, Director of Assessment
dmonder@wcu.edu

Alison Joseph, Business and Technology Applications Analyst
ajoseph@wcu.edu

Office of Institutional Planning and Effectiveness
oipe.wcu.edu, (828) 227-7239

With the help of Tim Metz, Elizabeth Snyder, Billy Hutchings, and Henson Sturgill